Math-in-CTE Lesson Plan

Lesson Title:	Stair Construction	Lesson 01
Occupational Area	Construction Technology	
CTE Concept(s):	Stair Layout and Construction	
Math Concepts:	Measurement, Slope, Estimation, Tolerances	
Lesson Objective:	Layout and build a set of stairs given the constraint of the building project.	
Supplies Needed:	Projector (visualizer), transparencies of all worksheets Per student: blank stair terminology worksheet, Stair Layout Code Essentials, line handout, Stair Layout Worksheet, Job Site Stairs Worksheet	
THE "7 ELEMENT		TEACHER NOTES (and answer key)
1. Introduce the Have you ever stairs and felt like down? Or how man up a flight of stairs Do you know why A lot of prope construction has to are very familiar classes, slope, oth and run. We terminology rather that is the construc	TE lesson. ne down a flight of ou were going to fall ny of you have gone nd tripped? at is? stair layout and do with a concept you with from your math rwise known as rise will be using that han "slope" because n industry standard.	Answer: When you felt like you were falling, the risers were too short - the slope was too steep - or the treads were too small. When you tripped, either the risers were too tall or too short, because a normal stair is between $6^{\prime \prime}$ and $73 / 4^{\prime \prime}$.
2. Assess stude as it relates to Take out a sheet the following:	s' math awareness CTE lesson. paper and write about	Free write to begin student engagement in the lesson and also use a formative

"Tell me what you know about rise
and run or slope."
3. Work through the math example
embedded in the CTE lesson.

Use a standard stair layout template and put on the visualizer. Then, place on top a grid (like graph paper). Shine this on the white board and show the students how to calculate:

- Unit rise
- Unit run
- Total rise
- Number of risers and any adjustments to make to the unit rise figure
- Number of treads and adjustments to make to the unit run figure

Show the students how all of the code specifications apply to a standard stair layout template.

Then, show a steep stair layout on the visualizer, putting the grid on top. Ask students to calculate:

- Unit rise
- Unit run

Ask them to explain why these stairs would feel like you were falling down as in the introduction example. Use any references to code for the explanation.
assessment to determine the collective knowledge base of the class as well as the prior knowledge of each student about slope (rise and run).
Have the statement written on the board for the students to refer to as they write.

First, students get a blank stair terminology sheet and fill it out with the correct code specifications.

- One less tread than riser
- Treads at least 11"
- Riser height: 6"-73/4"
- Minimum landing: 3'1"
- Minimum headroom: 6'8"

Students also receive "Stair Layout Code Essentials."

| Do a third example using the stair layout
 that leads to the City of Aurora Municipal
 Building. (The rise is too low and the run
 is too long.) Again, ask the students to
 calculate:
 o Unit rise
 o Unit run
 Students will explain why these stairs are
 so hard to walk on using any references
 to code for the explanation. |
| :--- | :--- |

5. Work through traditional math examples.

Project a sheet with five different lines on it of varying slopes. Place the same transparency grid on the top. Give students a handout of the same. Put students in small groups of 2-3 and assign them one of the slopes to calculate.
Remember that when you look at these lines, each line could be called the stringer on a set of stairs. It is all the same.

Have students show how they determined the rise and run of their line to the whole class.

6. Students demonstrate their understanding.

Using 7" as your average riser height, calculate the number of risers first that you would need. Remember that you cannot have a part of a riser, like $31 / 2$ risers. Let's do example \#1. Pay close attention to the way I make my decisions about how many risers to use in my stair layout.

Example \#1:

$701 / 2^{\prime \prime}$ total rise $\div 7=10.07$ risers. Since you cannot have 0.07 risers, you could have 10, or maybe 9 risers would work better. Even 11 risers might be the best. So now what we need to calculate is:
$701 / 2 " \div 9=7.83$ (unit rise)
$701 / 2 " \div 10=7.05$ (unit rise)

Students receive handout
See worksheet example.

Students receive the Stair Layout Worksheet.

Use 7 because 7" is average riser height.

Do first example on Stair Layout Worksheet.

$701 / 2^{\prime \prime} \div 11=6.41$ (unit rise)	
Only two fit in the parameters of a 6" to 7	
$3 / 4$ ": you can either have 10 or 11 risers.	
You would chose 10 risers because it	
results in a closer average riser height of	
7 " and is one less riser for cost of	
materials than using 11 risers. If needed,	
10 risers could also help with headroom	
height because 10 risers would create a	
slightly steeper slope, making for more	
headroom.	

NOTES:

