Math-in-CTE Lesson Plan

Lesson Title:	Compound Interest - A Millionaire's Best Friend		Lesson 01
Occupational Area	Business education		
CTE Concept(s):	Compound interest, types of investments, opportunity cost, diversification		
Math Concepts:	Percent, ratio, exponential functions, graphing, rounding, order of operations, estimation, substituting data into formulas and solving, charting, decimals		
Lesson Objective:	The effects of compound interest over time by comparing various investments, calculating compound interest using various rates of return		
Supplies Needed:	Mini whiteboards, dry erase markers, student calculators with exponent button, accompanying worksheet, color pencils/markers 45-60 min		
THE "7 ELEMENTS"		TEACHER NOTES (and answer key)	
1. Introduce the 1. Hook - As stude have a variety o available. Ask th much the refres them to estimate on similar items 2. Vocabulary: a. interest b. principal c. diversificat d. liquidity e. exponentia f. the differen and investi	E lesson. ts enter the class, drinks and snacks m to estimate how ments cost or ask how much they spend er school day. n functions e between saving	2. Graph on the whiteboard using Post-It's: "How many of these investing terms are you confident with?" Maybe different color PostIt's for each class - Chart: bus_bus_charts_01 Element 1 Things to bring into the discussion somewhere: Pay yourself first. Traditional company retirement is dissolving, as is Social Security.	
2. Assess students' math awareness as it relates to the CTE lesson.		Use mini whiteboards to gain feedback	

1. Jason invests $\$ 500$ in a savings account at a rate of 1.04% for 1 year. How much is in the account at the end of the year?
2. Evaluate $3 x+5 t$, when $x=4$ and $t=7$
3. Convert 3.6% into a decimal.
4. $I=$ Prt
$\mathrm{I}=500 \cdot 0.0104=5.20$
The total amount in the account will be $\$ 505.20$.
5. $3 \cdot 4+5 \cdot 7=12+35=47$
6. To convert from percent to decimal, we must divide by 100, which simply moves the decimal point two places to the left. ($3.6 \%=0.036$)

Once these two questions are mastered, we will proceed.

There are other ways of calculating

3. Work through the math example embedded in the CTE lesson.

1. Savings account problem \& graph Alicia Martin's savings account principal is $\$ 1000$. The 2\% interest is compounded annually. How much is in the account at the end of the year? At the end of 3 years? 5 years? 10 years? 20 years? Represent your answers via the nearest penny and visually via a line graph.
compound interest - for example, using an Excel spreadsheet or an online investment calculator, - but this method was chosen to give the students a hands-on / "see how it works" approach.

Hand out the worksheet to the students.
a. Start by solving 1 year and 3 years in the same manner as a repeated simple interest problem. ($\mathrm{I}=\mathrm{Prt}$)

Step 1- figure year 1 interest
I = $1000 \cdot 0.02 \cdot 1=20$
Total value after 1 year is $\$ 1020$
Add interest to principal for year 2 calculations

Step 2- figure year 2 interest
I = $1020 \cdot 0.02 \cdot 1=20.40$
Add interest to principal for year 3 calculations

Step 3- figure year 3 interest
$\mathrm{I}=1040.40 \cdot 0.02 \cdot=20.81$

Step 4- figure total interest after 3 years
I = 20 + 20.40 + 20.81= \$61.21
Total value after 3 years is \$1061.21
"This process is time consuming and

	Step 8 - Graph the results on the provided worksheet - be sure to connect the data points - Chart: bus_bus_charts_01 Element 3
4. Work through related, contextual math-in-CTE examples. 1. Mutual fund problem \& graph Alex Smith's Growth Stock Mutual fund principal is $\$ 1000$. The annual rate of 10.5% interest is compounded quarterly. How much is in the account at the end of the year? At the end of 3 years? 5 years? 10 years? 20 years? Represent your answers via the nearest penny and visually via a line graph.	This time we will use the compound interest formula for 1 year, 3 years, 5 years, 10 years, and 20 years: $\mathrm{FV}=\mathrm{PV}$ (1 $+r / m)^{m t}$, where: - $F V$ is the future value, - $P V$ is the present value (the principal you start with), - r is the annual rate of interest as a decimal, - m is the number of times per year the interest is compounded (monthly, annually, etc.), and - t is the number of years you leave it invested. Step 1 - Calculate the total value of the investment after 1 year. - Remember we are compounding quarterly or 4 times per year not just one! - $F V=1000 \cdot(1+0.105 / 4)^{4 \cdot 1}$ $=1109.21$ The total value of $\$ 1000$ invested for 1 year at 10.5 \% compounded quarterly is $\$ 1109.21$. Step 2 - Calculate total value of investment after 3 years. - $F V=1000 \cdot(1+0.105 / 4)^{4 \cdot 3}$ $=1364.70$ The total value of $\$ 1000$ invested for 3 years at 10.5 \% compounded quarterly is $\$ 1364.70$. Step 3 - Calculate total value of investment after 5 years. $\text { - } \begin{aligned} \mathrm{FV} & =1000 \cdot(1+0.105 / 4)^{4 \cdot 5} \\ & =1679.05 \end{aligned}$

	The total value of $\$ 1000$ invested for 5 years at 10.5 \% compounded quarterly is $\$ 1679.05$. Step 4 - Calculate total value of investment after 10 years. - $F V=1000 \cdot(1+0.105 / 4)^{4 \cdot 10}$ $=2819.21$ The total value of $\$ 1000$ invested for 10 years at 10.5% compounded quarterly is $\$ 2819.21$. Step 5 - Calculate total value of investment after 20 years. - $F V=1000 \cdot(1+0.105 / 4)^{4 \cdot 20}$ $=7947.92$ The total value of $\$ 1000$ invested for 20 years at 10.5% compounded quarterly is $\$ 7947.92$. Step 6 - Graph the results on the provided worksheet - be sure to connect the data points. -Chart: bus_bus_charts_01 Element 4
5. Work through traditional math examples. 1. Exponential function problem \& graph If $y=a(1+r)^{t}$, and y represents the total value after a principal amount (a) is compounded for (t) years at an annual rate of (r) expressed as a decimal (5% will be represented as 0.05), what is the value of y when $a=500, r=3.5 \%$, and $t=7$? Sketch what you think the graph of the equation will look like.	Compound interest is only one example of "exponential growth;" another is bacterial growth: how quickly bacteria grows. "r" and "t" must be in the same units; i.e., if " r " is the annual growth rate then " t " must be the number of years OR if "r" is the monthly growth rate then "t" must be the number of months. $\text { 1. } \begin{aligned} y & =a(1+r)^{t} \\ & =500(1+0.035)^{7} \\ & =500(1.035)^{7} \\ & =636.14 \end{aligned}$ Make sure to point out all the previous graphs are NOT linear (a straight line) but are in fact exponential as they increase at an increasing rate (get bigger and bigger, faster and faster). By taking the formula and replacing the " + " sign with a "-" sign, we have created an example of exponential decay, which is

	applicable to half-lives of elements, such as how long it takes for uranium or asbestos to become depleted. Another application of exponential functions has to do with fractals; http://www.google.com/search?q=fractals \&hl=en\&rlz=1T4ADFA enUS436US436\&p rmd=ivns\&tbm=isch\&tbo=u\&source=univ\& sa=X\&ei=BVr6TfL2L4vIsgabveTjAQ\&ved= OCGEQsAQ\&biw=1362\&bih=608 -Picture: bus_bus_picture_01
6. Students demonstrate their understanding. Finish the worksheet. 1. CD problem \& graph 2. Money Market \& graph 3. Savings bonds \& graph 4. Single stock \& graph 5. Growth stock Mutual fund compounded daily \& graph	See the worksheet \& key Now, the students should start with the instructions on the worksheet. Hook - After the worksheet is completed, bring their attention back to the snack in front of them. What was their estimate of its cost? If it was approximately $\$ 3.00$ per day times 170 school days ($3 \cdot 170=\$ 510$), they do have the ability to invest $\$ 500$ even if they don't think they do. In fact, if their "snacking habits" are the same for nonschool days, some of them could even accumulate $\$ 1000$ in one year if they discipline themselves for "investing habits."
7. Formal assessment. Which investment will be worth the most at the date of maturity? 1. $\$ 14,000 @ 2 \%$ for 3 years compounded quarterly 2. $\$ 5,000 @ 7 \%$ for 15 years compounded annually 3. $\$ 10,500 @ 6 \%$ for 6 years compounded monthly	1. $\$ 14,863.49$ 2. $\$ 13,795.16$ 3. $\$ 15,036.46$

NOTES:

