Math-in-CTE Lesson Plan

Lesson Title:	Back to Basics	Lesson: 01
Occupational Area:	Health Services Assistant	
CTE Concept(s):	Medical Math - unit conversions	
Math Concepts:	Unit conversions, ratios, proportions, exponents, basic operations (division, multiplication) metric prefixes	
Lesson Objective	Students will be able to convert between metric, U.S. standard and apothecary measurements using ratios and proportions. Students will define and pronounce and spell all key terms.	
Supplies Needed:	Pretest as bell ringer for this class period List of Key terms, Conversion Reference Sheet, Metric Staircase Reference sheet with prefixes, Pre Test, Worksheet, Post Test Lab visual aids: medicine cup, graduated container, catheter bag, baby bottle, measuring cups and spoons, various drinking cups (Add later)	
THE "7 ELEMENTS"		TEACHER NOTES (and answer key)
1. Introduce the CTE lesson. Because the health care system extends over the entire world, it is important for the health care worker to understand the systems of measurement. Do any of you know what the apothecary system is? Give an example.		The apothecary system was the original system of weights and measures but is no longer commonly used.
What are two additional systems of measurement? Give an example.		Metric and Household Systems of Measurement
This lesson will focus on the two more common systems of measurements, the metric system and the household system and using ratios and proportions to convert between systems of measure.		The metric system is the preferred system of measurement in health care settings at the present time. The household system is the one which you are probably the most familiar with and the one used when individuals take medications at home.
"Which of these if th measurement in the	preferred system of ealth care setting?"	
It will be important f symbols and abbre and household syst	you to recognize the ations of the metric ms and be able to	

convert from one system to another. In this lesson, you will study these two systems of measurements as they relate to health occupations.

2. Assess students' math awareness as it relates to the CTE lesson.

Pretest given the day before the lesson is presented.

Hand back pretest and have students assess their results and identify any errors occurring consistently.
Work any problems requested by students on the board.

3. Work through the math example embedded in the CTE lesson.

The metric system is used in many health care fields. There are three basic units of measurement in the metric system.
-Can anybody tell me what the three types are?

The metric system is based on a power of 10. Units other than basic units are created by either multiplying or dividing the basic units of measurement by the correct power of 10 .
-kilo (k): thousands, or 10^{3}, or 1,000
(multiply the base unit by 1,000)
-hecto (h): hundreds, or 10^{2}, or 100
(multiply the base unit by 1000
-deka (dk): tens, or 10^{1}, or 10 (multiply the base unit by 10)
-base unit of measurement (gram, liter, meter): ones or 10^{0}
-deci (d): tenths, or 10^{-1}, or 0.1 (divide the base unit by 10)
-centi (c): hundredths, or 10^{-2}, or 0.01 (divide the base unit by 100)
-milli (m): thousandths, or 10^{-3}, or 0.001 (divide the base unit by 1000) See the following conversion sheet. http://becps.net/ConversionsMMNS.htm
Metric measurements are easy to convert from unit to unit because the units represent multiples of 10. Placement of a

Grams, meter, liter
number in relation to the decimal point represents the powers of 10, so metric measurements can be converted by moving the decimal point according to the power of 10 required.
-How many grams (g) are in 40 kilograms (kg)?
http://becps.net/ConversionsLearningActivit yMMNS.htm
http://www.studystack.com/flashcard-43359

As you can see, the first step in converting metric measurements is to list the units in order from largest to smallest, using the prefixes along with the base unit of measurement. If movement is from left to right, the decimal point is moved the same number of places to the right. If movement is from right to left, the decimal point is moved the same number of places to the left.
-To move from a larger unit of measurement in the metric system to a smaller unit of measurement, move the decimal point to the correct number of places to the right.
-To move from a smaller unit of measurement in the metric system to a larger unit of measurement, move the decimal point the correct number of places to the left.
-There is also an interrelationship between units in the metric system. One important relationship is a cube that measures 1 centimeter on all sides will hold 1 milliliter

First, list the measurements in order from largest to smallest:

Kg hg dkg g dg cg mg
To go from kilograms to grams, movement is three places to the right. The decimal point should therefore be moved three places to the right.

If you write 40 as 40.000 and then move the decimal point.
$40.000=40000$
So your answer is that 40 kg equals 40000 grams.

How many deciliters (dkL) are in 14,500 milliliters?
Once again write the measurements in order from largest to smallest.
$\mathrm{kL} h \mathrm{dkL} L \mathrm{dL} \mathrm{cL} \mathrm{mL}$
To go from milliliters (mL) to deciliters (dkL), move four places to the left. The decimal point should therefore be moved four places to the left.
Write 14,500 as $14,500.0$ and then move the decimal point to the left 4 places.
$14,500.0=1.45000 \mathrm{dkL}$

Examples of conversions:

$$
\begin{aligned}
\frac{12 i n}{1 f t} & =\frac{x i n}{4 f t} \\
12(4) & =1(X)
\end{aligned}
$$

	Systems of Measurement
	Unit II Lesson 6
(See attached System of Measurement	
	Assessment: health_health_assessment_01)

NOTES:
Simmers, L., Simmers-Nartker, K, and Simmers-Kobelak, S. (2008). Diversified Health Occupations, $7^{\text {th }}$ ed. Delmar Cengage Learning.

Nichols, E. D., and Schwartz, S. L. (1998). Mathematics Dictionary and Handbook. Nichols Schwartz Pub.

