Math-in-CTE Lesson Plan

Lesson Title:	Safety and Sanitation	Lesson 01			
Occupational Area:	Culinary Arts				
CTE Concept(s):	Safety and Sanitation				
Math Concepts:	Tables, graphs, growth rate (exponential notation), and patterns				
Lesson Objective:	Students will be able to compare bacterial growth at different temperatures by using graphs				
Supplies Needed:	Bacterial growth rate chart, graph paper, ruler, various colored pencils				
THE "7 ELEMENTS"					TEACHER NOTES
(and answer key)					

2. Assess students' math awareness as it relates to the

 CTE lesson.1. What do chilling, freezing and heating do to bacteria?
2. What is an exponent?
3. What is a graph?
4. Name some components of a graph?
5. Chilling and freezing slow down the growth of bacteria, heating kills the bacteria.
6. *When we talk about exponential growth, and how fast something grows, how do you think that looks mathematically? What word do you think of in mathematics? Then ask, what is an exponent? What does it look like? Can someone give me an example? How would we solve this? Give multiple examples using various exponents and ask students to identify the exponent and the base: $3^{2}=$ $3 \cdot 3=9,4^{3}=4 \cdot 4 \cdot 4=64,2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$. An exponent tells how many times the base is used as a factor.
7. A pictorial representation of some mathematical relationship.
8. The x axis (horizontal line), the y axis (vertical line), forming a right angle. Coordinate pairs which are an ordered pair of numbers that locates a point on the coordinate plane with reference to the x - and y axes. We use the lines to represent different related values, plot the coordinates on the graph and draw a line through them to represent the changes.
9. A growth rate that does not change, on a graph it is represented as a straight line.
10. What is constant growth or linear growth?
11. Lets go back to talk about exponential growth, what do you think that looks like. What if we drew pictures?

3. Work through the math example embedded in the CTE lesson.

Using the table of values related to bacteria growth rates we will plot the growth of bacteria at body temperature.
At optimal temperature ($98.6^{\circ} \mathrm{F}$) Salmonella bacteria cells multiply by two every twenty minutes. Let us graph their growth for 2 hours.
However, Salmonella will not grow at temperatures below $44^{\circ} \mathrm{F}$; most refrigerators are set at $38^{\circ} \mathrm{F}$, and therefore salmonella does not grow at all in refrigeration. So why does chicken eventually spoil? Through the law of decay (putrefaction).

4. Work through related, contextual math-in-CTE examples.

Have students graph the growth rate of bacteria at $45^{\circ} f$. for 72 hours.
Napkin folding exercise: using a napkin illustrate how many holes it has (zero). Fold the napkin two times (in fourths) and cut the corner with scissors. Unfold and show how many

Base - The number which is to be raised to a given power Power - A number raised to a power

ServSafe pg. 2.11

Temperature	Generation Time
$40^{\circ} f$.	No growth
$45^{\circ} f$.	12 h.
$72^{\circ} \mathrm{f}$.	65 m.
$98.6^{\circ} \mathrm{f}$.	$\mathbf{2 0} \mathbf{~ m}$.
$108^{\circ} \mathrm{f}$.	24 m.

Bacterial growth rate chart, graph paper, ruler, various colored pencils.

Napkin folding: Napkins, scissors, paper, pencil and graph paper.

holes there are. Record the values on a table. Continue folding, cutting, counting and recording as you go. Graph your results.	
5. Work through traditional math examples. Assign worksheet, review sheet with students to check for understanding, allow students for time to work the problems. Go through the answers with the students on the board.	See attached practice worksheet. See answer key worksheet
6. Students demonstrate their understanding. Students will do a worksheet for homework	See attached homework assignment and answer key
7. Formal assessment. On a test, provide a math problem to assess understanding. Example: You are slicing ham on your shift, get distracted and forget to place it back in the refrigerator. The ham is at room temperature for six hours and originally had 6 cells of e. Coli that had been cross-contaminated from some ground beef. The e. Coli bacterium grows at a fast rate, doubling every 60 minutes at room temperature. Graph how many bacterium you will have at the end of the six hours, when you finally remember that you left it out. What should you do with the ham?	

NOTES:

