Evidence Based Curriculum Integration

Presented by Dr. James R. Stone III NCPN January 2013

2013 National *Technology Centers That Work* Leaders' Forum: Technology Centers of the Future

Agenda for Technology Centers of the Future

- Future Scan: Wither our students?
- Where have we been: 30 years of 'reform'
- Where do we need to go: Evidence based curriculum integration

High Growth? High Demand? High Wage?

What do the data say about where the jobs are?

High Growth Occupations 2010-2020

High Demand Occupations 2010-2020 The BLS Perspective

Another Perspective

63% of all jobs will require some college or better by 2018.

GEORGETOWN UNIVERSITY Center on Education and the Workforce •Source: Analysis of March CPS data, various years,

•Center on Education and the Workforce forecasts of education demand to 2018.

Sub-Baccalaureate Credentials

Education and Future Work: BLS & CEW

Why Technical Education Matters Labor Market Demand

College for all? Only 40% of 27-year olds have earned an

A 3rd Disconcerting Perspective

Erik Brynjolfsson Andrew McAfee Race Against

The Machine

How the Digital Revolution is Accelerating Innovation, Driving Productivity, and Irreversibly Transforming Employment and the Economy

Computers now exhibit human-like capabilities not just in games such as chess, but also in complex communication such as linguistic translation and speech (Think Siri)

A 3rd Perspective: The Race Against the Machine (The Machines are Winning?)

- The Google car(truck?)
- IBM Watson
- Deep Blue
- The "Square"
- Text readers/ Pattern recognition (goodbye legions of lawyers-only 60% accurate)
- Automated 'call centers' (goodbye India)
- GeoFluent (goodbye translators)
 - Vending machines for ... everything

Can People Win?

- Instructional methods
- Softer skills
- Instructional focus

The Human Advantage (for now)

- Khan Academy
- CTSOs/WBL
- Hyperspecialists, entreprenuership
- Physicality of work
- Advanced pattern recognition
- General problem solving
- Creativity

SCANS 21st Century Skills "Soft" Skills Employability Skills

Required skills

Rigor= More

A narrow curriculum High school has become the new middle school

Where Have We Been: 30 Years of "Reform"

Context: Since the mid-1980s we have:

Added the equivalent of one full year of core academics (math, science, language arts) to high school graduation requirements.

 (NAEP) Reading scores have not improved or significantly declined*

 (NAEP) Science scores have not improved or significantly declined*

 (NAEP) math scores have remained relatively unchanged

*Depends on the starting and ending timeframe

Taking more math is no guarantee

- Only 13% of students who took Alg I, II & Geometry scored a 22 on the ACT exam¹
- Adding Trig increases to 37%¹
- 43% of ACT-tested Class of 2005¹ who earned A or B grades in Algebra II did not meet ACT College Readiness Benchmarks in Math² (75% chance of earning a C or better; 50% chance of earning a B or better in college math)
 - ACT, Inc (2004) Crisis at the Core
 ACT, Inc. (2007) Rigor at Risk.

It is not getting much better

*NCES, 2012

To Address College & Career Readiness: Make High School Matter

TCTW Key Practices

What-Academic studies

- Teach more students the essential concepts of the college-preparatory curriculum by
- encouraging them to apply academic content and skills to real-world problems and projects within their CT studies

HOW- Students actively engaged

- Engage students in CT
- and academic classrooms in rigorous and challenging assignments using researchbased strategies and technology.

3 Integrations for TCTW

System

- Vertical Alignment, "Articulation"
- Career Clusters/Pathways
- Dual Credit/Enrollment
- Career Academies/MCHS

Curricular

- Incorporate more academics into CTE
- Incorporate more CTE into Academics
- Senior projects

Instructional

- CTE to Academic & Academic to CTE
- Pedagogic framework
- Teacher skill/performance

Curriculum Integration Experimental Research (Instructional)

- Math-in-CTE: complete
 - Technical Assistance 7 yrs
- Literacy-in-CTE: complete
 - Technical Assistance 2 yrs
- Science-in-CTE:
 - Study recently concluded

Why We do Experimental Research: A Cautionary Tale

- The Japanese eat very little fat and suffer fewer heart attacks than the British or Americans.
- The Mexicans eat a lot of fat and also suffer fewer heart attacks than the British or Americans
- The French eat a diet rich in calories, fats and wine but suffer fewer heart attacks than British or Americans
- The Italians drink excessive amounts of red wine and also suffer fewer heart attacks than the British or Americans
- The Germans drink a lot of beer and eat lots of sausages and fats and suffer fewer heart attacks than the British or Americans
- CONCLUSION: Eat and drink what you like.

Speaking English is apparently what kills you.

Experimental design

- Random Assignment (classroom level)
- Pretest and posttest using established tests
- Fidelity of treatment
- Monitoring of counterfactual group(s)

What we tested: Math Pedagogic Framework The students whose

teachers used the problem based

curriculum in their

classrooms scored significantly higher on

- 1. Introduce the CTE lesson
- measures of problem
 - solving skills (Institute Of Education Sciences, August 9,2010
 - Work through *related*, *contextual* examples
 - 5. Work through *traditional math* examples
 - Students demonstrate understanding 6.
 - Formal assessment

Authentic Literacy: What we tested

	MAX	ASH	
Before Reading	M otivation Reducing the anxiety and improving the probability of success in reading	Introduction and modeling of the skill	
During Reading	Acquisition Individual silent reading for personal interpretation	Guided practice in learning skill	
After Reading	EXtension Cooperative construction of meaning through discussion, writing, etc.	Reflection on how the skill worked	

Science-in-CTE "Six Elements" What We Tested

- 1. Introduce the CTE lesson
- 2. Assess students' pre-understandings of CTE and the embedded science
- 3. Walk through the CTE content and the **embedded science** within it
- 4. Students participate in an *authentic application* of the CTE using inquiry approach
- 5. Students demonstrate what they have learned about the explicit science
- 6. Formal assessment of CTE and science knowledge and skills

What We Learned: Experimental Test of Math Integration

- Students in the experimental classes scored significantly higher on Terra Nova and Accuplacer
- The effect: 71st percentile & 67th percentile
- No negative effect on technical skills
- 11% of class time devoted to enhanced math lessons

What We Learned: Experimental Test of Science Integration

Reading

- Two approaches tested
- Both significantly improved reading scores
- Students of teachers' with years of PD significantly out performed groups

Science

- Overall, no effect
- Significant effect for nonwhite males and females

What We Have Learned: From Research to Technical Assistance

How to Make Curriculum Integration Effective

Core Principles

- Begin with the CTE curricula, not with academics
- Approach academics as essential workplace skills
- Maximize the academics in CTE
- Support CTE teachers as "teachers of academics-in-CTE"; not as academic teachers
- Foster and sustain a Community of Practice

Begin with the CTE curricula, not with the academics

What is Curriculum Mapping?

- Genesis of the academic integration
 - You have to know where the academic opportunities are located to begin the process
 - Precedes integrated lesson development
- A "process" of investigating the CTE curriculum:
 - What do I teach and
 - Where do the academics naturally occur?
- An ongoing process (not a one-time only)
 - Growing with the process; Revisiting the maps

The Mapping Process...

- Create a "map" for the term or school year in the course/program selected
 - Use the mapping template
- Identify the CTE concepts worthy of academic enhancement.
 - Opportunities may outweigh the time available: Think about what will most help CTE students.
 - Maintain authenticity: Avoid "academics for the sake of academics"

CURRICULUM MAPPING

CTE PROGRAM: HEALTH OCCUPATIONS

CTE UNIT/TOPIC	CTE CONCEPTS	MATH CONCEPTS	ACADEMIC STANDARDS
Human Structure and Function	Compare cell, tissue organ and body systems relationship	e, Solve linear equations Read and interpret graphs and charts Problem solving statistical of Detion	
Map the Ma CT	th onto the E	standards (e.g. CCSS) statistical data, ratio and proportion	

Creating opportunities for students to apply academic knowledge:

 generate examples and lessons in which students solve authentic workplace problems

 introduce and reinforce academic skills as "tools" needed in the "real world"

 bridge CTE and academic vocabulary in developing and teaching integrated lessons

Maximize the academics in CTE

Approach Academics as a Workplace Skill

The Occupational Expression of Academics

A career ready person is proficient in the core academic subjects, as well as in technical topics. This foundational knowledge base includes competence in a broad range of academic subjects grounded in rigorous internationally benchmarked state standards... Career Readiness Council 2012

Math-in-CTE	Curriculum	Map:	Health	Science
-------------	------------	------	--------	---------

CTE Course/Unit	CTE Concepts	Math Concepts	Common Core Math Standards Middle School	Common Core Math Standards High School
Patient assessment	Input/output; Vital signs; Height/weight; Conversions; Instrument reading	Reading measurement; Basic operations; Ratio/ Proportion; Solving equations; Scales	6.NS.2; 6.NS.3; 7.NS.1; 6.RP.1; 6.RP.2; 6.RP.3; 7.RP.1; 7.RP.2; 7.RP.3; 6.EE.2; 7.EE.3	A.APR.1; A.APR.7; N.RN.3; N.Q.1; G.MG.3; A.CED.4

http://www.nrccte.org/professional-development/math-cte/curriculum-maps

A Process and A Pedagogy

"More than a set of lesson plans..."

a continuous process...

...using pedagogic frameworks through which to enhance and teach the embedded academics

Support CTE teachers as "teachers of academics-in-CTE"; not as academic teachers

OTHER LESSONS

- Maintaining the CTE in integration
- Not a replacement of CTE curriculum
- Rather, an enhancement of existing curricula
- Do-able for CTE teachers
- The tipping point
- Maintaining authenticity

Foster and sustain a Community of Practice

Extended Professional Development

- Convening teachers on a regular basis
 - Offering opportunities for partnerships with academic teachers to grow
 - Clustering CTE teachers of common content sharing the load
- Extended PD = 10 days per year
 - Summer = 5 days
 - Fall = 2 days
 - Winter = 2 days
 - Spring = 1 day
- Ongoing accountability
- Long-term planning for sustainability

Changing the Paradigm in Practice

Old Models

- A *box* of curriculum
- Short term "training"
- Little or no support after the "sage on the stage" goes away
- Replicable by individual teachers (assumed)

New Models

- Process not an event
- Built on communities of practice
- On-going support the learning curve
- Requires teams of committed teachers working together over time

High school is the last education opportunity paid for wholly by the public. It's purpose has to be to do the best it can to provide all who leave it the foundation necessary to enter, or further prepare for, adult life.

Barton, 2006

As I Imagine the future...

- World class curriculum...
 - Critical thinking developed by using academic skills to solve real problems in class and on the job
 - Builds related academic, occupational and technical skills
- Delivered by world class teachers who
 - are technical masters
 - can link related academics to technical content
 - supported by employers who engage your students
- Situated in programs that build on intensive career development, provide career pathways that link K-12 to postsecondary education and industry recognized credentials for careers that matter

Homework: For the "Flat World"

VISIT OUR WEBSITE OR SEND ME A NOTE

www.nrccte.org

CTE

National Research Center for Career and Technical Education

James.stone@nrccte.org