College and Career Ready for the 21st Century: The Critical Role for CTE

James R. Stone III University of Louisville National Research Center for CTE

Context for the Conversation

- The future of jobs: Raison d'être for CTE
- How we turned HS into middle school
- Evidence of CTE's impact on student engagement, achievement and transition to careers and college
- Building the CCR system

Why Research?

"If assumptions you hold about a problem are wrong, then it is very likely your solutions will be as well"

Starting Point for POS: The Labor Market

Three Perspectives: Worse, Worser and OMG!

The Labor Market STEM: Let's clarify . . .

- S&E occupations make up only about onetwentieth (5%) of all workers (5.3% in 2018), Urban Institute, 2007
- 435,000 U.S. citizens and permanent residents a year graduated with bachelor's, master's, and doctoral degrees in science and engineering. Over the same period, there were about 150,000 jobs added annually to the science and engineering workforce.

http://www.businessweek.com/print/smallbiz/content/oct2007/ sb20071025_827398.htm

Is there a shortage of scientists?

Murray said that none of the companies she has talked with has suggested that there is a shortage of qualified chemists or life scientists. She said that employers' greatest concern "is not numbers, it is training." She cited the example of managers who told her they could interview hundreds of candidates for an organic chemistry position but wish they knew how to identify those candidates who "can behave *collaboratively*" and have the other broad competencies discussed at the workshop. She argued that the degree to which scientists have these other capabilities "really seems to be the problem."

National Research Council. (2008). Research on Future Skill Demands: A Workshop Summary. Margaret Hilton, Rapporteur. Center for Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

High Growth Occupations 2010-2020

High Demand Occupations 2010-2020 The BLS Perspective

Another Perspective

The USA Today Version of Reality

Annual Salary

Education and Future Work: BLS & CEW

Sub-Baccalaureate Credentials

Middle Skill Occupations (B.A./B.S.

NOT Required)

Accuration	
Occupation	Salarv
Air Traffic Controller	102.300
Storage and distribution manager	66.600
Transportation manager	66,600
Non-retail sales manager	59,300
Forest fire fighting/prevention supervisor	58,920
Municipal fire fighting/prevention	58 902
supervisor	58 720
Real estate broker	58 710
Elevator installers and repairer	58 350
Dental hygienist	53 990
Immigration and Customs inspector	52,930
Commercial pilot	55,670

Farr, M. & Shatkin, L. (2006) *The 300 Best Jobs That Don't Require a Four-Year Degree.* (US Department of Labor, Bureau of Labor Statistics)

Why Technical Education Matters

A 3rd Disconcerting Perspective

Erik Brynjolfsson Andrew McAfee

Race Against The Machine

How the Digital Revolution is Accelerating Innovation, Driving Productivity, and Irreversibly Transforming Employment and the Economy

Computers now exhibit human-like capabilities not just in games such as chess, but also in complex communication such as linguistic translation and speech (Think Siri)

A 3rd Perspective: The Race Against the Machine (The Machines are Winning?)

- The Google car(truck?)
- IBM Watson
- Deep Blue
- The "Square"
- Text readers/ Pattern recognition (goodbye legions of lawyers-only 60% accurate)
- Automated 'call centers' (goodbye India)
- GeoFluent (goodbye translators)
 - Vending machines for ... everything

Can People Win?

- Instructional methods
- Softer skills
- Instructional focus

The Human Advantage (for now)

- Khan Academy
- CTSOs/WBL
- Hyperspecialists, entreprenuership
- Physicality of work
- Advanced pattern recognition
- General problem solving
- Creativity

That's the Uncertain Reality of the Labor Market How has education responded?

Rigor= More

A narrow curriculum High school has become the new middle school WHERE HAVE WE BEEN: 30 YEARS OF "REFORM"

Context: Since the mid-1980s we have:

Added the equivalent of one full year of core academics (math, science, language arts) to high school graduation requirements. (NAEP) Reading scores have not improved or significantly declined* (NAEP) Science scores have not improved or significantly declined* (NAEP) math scores have remained relatively unchanged

*Depends on the starting and ending timeframe

Taking more math is no guarantee

- Only 26% of students who took Alg I, II & Geometry scored a 22 (ACT Benchmark) on the ACT exam scoring an average of 17.7¹
- 18% in PA (goal is 40%?)
- Adding Trig increases to the average score to 19.9¹
- Not until calculus is added, does the average score exceed 22 – 5 years of high school math.
- 43% of ACT-tested Class of 2005¹ who earned A or B grades in Algebra II did not meet ACT College Readiness Benchmarks in math²

1. ACT, Inc (2004) Crisis at the Core; 2. ACT, Inc. (2007) Rigor at Risk.

ACT Score	Level	ACT Standard-Associated Task
13-15	Alg I / CC HS	Simplify ratios
16-19	Alg I / CC 8 th	Add, subtract, multiply, and divide rational numbers, including integers, fractions, and decimals, without calculators
	Alg I / CC HS	Use rational numbers to demonstrate knowledge of additive and multiplicative inverses
20-23	Alg I / CC 8 th	Set up and solve problems following the correct order of operations (including proportions, percent, and absolute value) with rational numbers (integers, fractions, decimals)
	Alg I / CC 8 th	Give the domain and range of relations and functions
	Alg I / CC 8 th	Evaluate functions at given values
	Alg I / CC HS	Apply algebraic properties (e.g., commutative, associative, distributive, identity, inverse, substitution) to simplify algebraic expressions
	Alg I / CC HS	Translate real-world problems into expressions using variables to represent values
	Alg I / CC HS	Identify the effect on mean, median, mode, and range when a set of data is changed
	Alg I / CC HS	Find the probability of a simple event
	Geo / CC 8th	Identify corresponding, same-side interior, same-side exterior, alternate interior, and alternate exterior angle pairs formed by a pair of parallel lines and a transversal and use these special angle pairs to solve problems (e.g., solve equations, use in proofs)

Course/ Common Core	ACT Topic		
		Score	
Alg I CC 8th	Add, subtract, multiply, and divide rational numbers, including integers, fractions, and decimals without calculators		
Alg I CC 8 th HS	Use properties of exponents (including zero and negative exponents) to evaluate and simplify expressions		
Alg I CC 8th	Find rational number square roots (without calculators) and approximate irrational square roots (with and without calculators)		
Alg I CC 8th	Evaluate and simplify radical expressions		
Alg I CC 8th	Use scientific notation when working with very large or very small quantities	(24-27)	
Alg I CC 8th	Set up and solve problems following the correct order of operations (including proportions, percent, and absolute value) with rational numbers (integers, fractions, decimals)		
Alg 8th	Identify, formulate, and obtain solutions to problems involving direct and inverse variation		
Alg I CC 8th	Recognize the concept of slope as a rate of change and determine the slope when given the equation of a line in standard form or slope-intercept form, the graph of a line, two points, or a verbal description		
Alg I CC 8th I CC	Translate between different representations of relations and functions: graphs, equations, sets of ordered pairs, verbal descriptions, and tables		
Alg I CC 8th	lg I CC 8thInterpret data from line, bar, and circle graphs, histograms, scatterplots, box-and-whisker plots, stem-and-leaf plots, and frequency tables to draw inferences and make predictions		
Alg I CC HS	I CC HS Simplify ratios		
Alg I CC HS	Solve formulas for a specified variable	(24-27)	
Geo CC HS Apply relationships between perimeters of similar figures, areas of similar figures, and volumes of similar figures, in terms of scale factor, to solve mathematical and real-world problems		(28-32)	
Geo CC HS	Use cross sections of prisms, cylinders, pyramids, and cones to solve volume problems	(28-32)	
Geo CC HS Find the lateral area, surface area, and volume of prisms, cylinders, cones, and pyramids in mathematical and real-world settings		(28-32)	
	Find the surface area and volume of a sphere in mathematical and real world sattings	(28.22)	

Career Ready Math Skills: Getting the job*

	Telecommunication Junior	
Algebra I	Technician	
	Nursing	
	HVAC	
	Survey Technician	
	Plumbing	
	Automobile Technician	
Geometry	Survey Technician	
	Plumbing	
	Automobile Technician	
	Nursing	
	HVAC	
	Telecommunication Junior	
Algebia II	Technician	

*Preliminary analysis, NRCCTE 2012

One solution?

Be born to smarter parents!

So, Those are the Challenges . . .

What does "average" CTE do?

To Address College & Career Readiness: Make High School Matter

CTE Keeps Kids in School

NS=Statistically not significant

- CTE Participation helps students "survive" high school
- Each CTE credit taken (at 3 or more) reduces the hazard of dropping out compared to students taking less than 3 CTE credits

Engagement: We have a boy problem

... but many of the people who don't fit in are boys. A decade or so ago, people started writing books and articles on the boy crisis. At the time, the evidence was disputable and some experts pushed back. Since then, the evidence that boys are falling behind has mounted. The case is closed. The numbers for boys get worse and worse.

- By 12th grade, male reading scores are below females'
- 11th grade boys write at an 8th grade girl level
- Boys used to have an advantage in math and science, but that gap is nearly gone.
- Boys are more likely to have discipline problems
- Boys account for ³/₄ all D's and F's
- Men are a minority in college (40%)
- 2 million fewer men graduate from college over the past decade than women
 - Grad school gap is even higher

David Brooks, NYT July 5, 2012

CTE Keeps Boys in School!

A Survival Analysis

CTE Participation helps boys "survive" high school There is no CTE "survival" effect for girls; but it "does no harm"

Why is this important?

- Lower lifetime earning
- Increased risk they will never engage in sustained full-time employment
- 6.1 million NEETs in the U.S. = \$100 billion annual cost to U.S. taxpayers
- There are the social & emotional costs that are beyond dollars
- Higher risk of social conflict...look to Spain

McKinsey Global Institute, March 2012

Teens and Young Adults have been hit the hardest by the Great Recession

Not Just Our Work: Economists' Perspective

"There is one approach that does tend to improve graduation rates and labor market earnings, especially for at-risk youth: high-quality career and technical education (CTE)"

Holzer, H.J., Lane, J.I., Rosenblum, D.B. & Andersson, F. (2011). Where are all the good jobs going.

CONSIDER WHAT IS REQUIRED FOR THE WORKPLACE OF TOMORROW

Occupational SCANS 21st Century Skills "Soft" Skills Employability Skills College & Career Ready

Required skills

Industry Knows This:

Toyota Next Generation Skilled Team Member

Target:

100% of Maintenance Workforce

To be college ready: What college, what skills?

Academic

Skills & Knowledge

- 1. Framework
- 2. Where skills are learned

- Trade/Technical School?
- Apprenticeship?
- Community College?
 - Certificate? Diploma? Degree-Selective or not?
 - Nursing
 - Allied health
 - Law enforcement
 - Engineering technology
 - Computer technology
 - Cut scores?
- Baccalaureate College?
 - MN College Readiness Benchmarks set by ACT: an 18 in English, 22 in Math, 21 in Reading, and 24 in Science.
 - Only 32% of Minnesota's 2009 ACT-tested graduates met all four

Too Many College Grads?

- ...turning out vastly more college graduates than there are jobs in the relatively high-paying managerial, technical and professional occupations to which most college graduates traditionally have gravitated.
- Roughly one of three college graduates is in jobs the BLS says require less than a bachelor's degree.

Richard Vedder, director of the Center for College Affordability and Productivity WSJ 6/21/2012 College graduates, on average, are smarter and more disciplined and dependable than high-school graduates—so much of the reported earnings differential has little to do with college learning.

 We have engaged in massive and costly credential inflation to certify competency for jobs.

Not Enough College Grads?

By 2020, our research projects that the United States may have 1.5 million too few workers with college or graduate degrees and 6 million more without a high school diploma than employers will demand. McKinsey Global Institute, 2012

What Occupational Skills?

Non-Cognitive

Employability

- Teamwork
- Oral & written skills

- Deal with setbacks
- Stay on track
- Consistency
- Easily distracted
- Hard worker
- Persistence
- 'Stick-to-it tivess'
- Diligence

Duckworth, 2011 "Grit"

- Professionalism
- **Ethics**
- Creativity
- Problem solving
- **Ethics**
- Systems knowledge
- Responsibility

SCANS, 21st Century

What technical skills?

- Immediate specific job skills*
- Industry certifications
- 132 available through HS programs (n=14 states)

Engaging Students through Career Development

Pedagogic Tools for World Class CTE

Classroom instruction

Work based learning-WBL

- Project based learning
- Contextualized learning
- Labs
- Shops
- Job shadowing
- Internships
- School-based enterprise
- Cooperative education
- Apprenticeships
- Leadership development
- Professional development
- Service/social engagement
 - Competitive events

CTSOs

Curriculum Integration Experimental Research (Instructional)

- Math-in-CTE: complete
 - Technical Assistance 7 yrs
- Literacy-in-CTE: complete
 - Technical Assistance 2 yrs
- Science-in-CTE:
 - Study recently concluded

Pedagogy of Quality CTE: Curriculum Integration

Math-in-CTE - A study to test the possibility that enhancing the embedded mathematics in Technical Education coursework will build skills in this critical academic area without reducing technical skill development.

What We Learned: Experimental Test of Math Integration

- Students in the experimental classes scored significantly higher on Terra Nova and Accuplacer
- The effect: 71st percentile & 67th percentile
- No negative effect on technical skills
- 11% of class time devoted to math lessons

The Occupational Expression of Academics

A career ready person is proficient in the core academic subjects, as well as in technical topics. This foundational knowledge base includes competence in a broad range of academic subjects grounded in rigorous internationally benchmarked state standards... Career Readiness Council 2012

CTE Course/Unit	CTE Concepts	Math Concepts	Common Core Math Standards Middle School	Common Core Math Standards High School
Patient assessment	Input/output; Vital signs; Height/weight; Conversions; Instrument reading	Reading measurement; Basic operations; Ratio/ Proportion; Solving equations; Scales	6.NS.2; 6.NS.3; 7.NS.1; 6.RP.1; 6.RP.2; 6.RP.3; 7.RP.1; 7.RP.2; 7.RP.3; 6.EE.2; 7.EE. 3	A.APR.1; A.APR.7; N.RN.3; N.Q.1; G.MG.3; A.CED.4

Math-in-CTE Curriculum Map: Health Science

http://www.nrccte.org/professional-development/math-cte/curriculum-maps

- Significant improvement from both approaches
- Teachers with two-years experience in method had greater effect

Experimental Test of Reading Interventions in CTE

Tools for College & Career Readiness

Classroom instruction

Work based learning-WBL

- Project based learning
- Contextualized learning
- Labs
- Shops
- Job shadowing
- Internships
- School-based enterprise
- Cooperative education
- Apprenticeships
- Leadership development
- Professional development
- Service/social engagement
 - Competitive events

WBL: Everywhere but in the U.S...

- The % of youth in VET ranges from 5% (Ireland) to 80% (Czech Republic).
- More than 50% youth in VET: Austria, Belgium, Finland, Switzerland, Australia, Germany, Sweden, Denmark and others.
- Japan, United Kingdom, France, Korea and others exceed 20%
- The U.S. doesn't make the list! Learning for jobs (OECD, 2010)

The Value of WBL

Nations enrolling a *large proportion of upper*secondary students in vocational programs that include heavy does of WBL have significantly higher:

- school attendance rates
- higher upper-secondary completion rates
- college attendance

Bishop & Mane, 2004

Pedagogic Tools for World Class CTE

CTSOs

- Leadership development
- Professional development
- Service/social engagement
- Competitive events

The CTSO: Building Occupational Skills

Function

Competitive Events

- Leadership Development
- Professional Development

SkillsUS⁴

Effect

- Academic Engagement
- College Aspirations
- Grades
- Career Efficacy
- Employment Aspirations
- No Effect
- (-)Career Aspirations
- Employment Aspirations
- Career Efficacy

(Alfeld, et al, 2007)

Building a CCR System

What is a POS?

Perkins

Incorporate secondary education and postsecondary education elements;

Coherent and rigorous content in a coordinated, nonduplicative progression of courses that align secondary education with postsecondary education ... to adequately prepare students to succeed in postsecondary education;

May include dual or concurrent enrollment programs;

Lead to an industry-recognized credential or certificate at the postsecondary level, or an associate or baccalaureate degree.

Research Points toward:

<u>System</u>

- Vertical Alignment, "Articulation"
- Industry & Education Partnerships
- Career Clusters/Pathways
- Dual Credit/Enrollment

Programmatic

- Incorporate more academics into CTE
- Incorporate more CTE into Academics
- Career Academies/MCHS/TCTW

Curriculum/Instructional

- CTE to Academic & Academic to CTE
- Pedagogic framework; Signature Features (SREB, Liked Learning)
- Teacher skill/performance

An Industry Driven POS-Toyota

The U.S. community college system produces less capable graduates than parallel systems in competitor nations

Intentional preparation consists mostly of academic education only, i.e. pass technical courses and get a degree.

Schools do not produce graduates with vital preparation for workplace success, such as a highly developed safety culture, skills in workplace organization, lean work skills, and problem solving.

The Toyota Solution Seamlessly Connect Paths for Career Long Growth and to Strengthen the Whole Company

The Solution Totally Redesign the Learning Environment

The New Model School

For Manufacturing

MORE REALISTIC Looks Like a Factory Feels Like a Factory

JENCE CIRCUITRY

MANUFACTURING SIMULATOR Central Focus Reason for Learning Toyota Troubleshooting

TOYOTA LEARNING Safety, TPS, 5S Learning Lab

Make the Place of Learning look and feel like the Place of Work

ORGANIZED BY FUNDAMENTAL SKILL Electricity / Fluid Power Mechanics & Fabrication

PROCESS LEARNING Students learn in a structure sequence

Students Learn the *Right* Way the *First* Time

Key Elements for POS (OVAE, DOL, CLASP)

- Partnerships
- Labor market demand focused balanced with individual focus (career development)
- Alignment policies, measures, education programs
- Integrated, contextualized curriculum
- Industry Recognized (stackable) credentials
- Professional development
- Data driven: continuous improvement & accountability

Emergent trends

- Some evidence of academic achievement effect, but the evidence is mixed
- Career guidance/career development is a necessary condition for CCR
- Mandate did not appear to have much effect on POS implementation (e.g., % of students engaged in POS, use of dual credit)
- 10 OVAE elements are not equally important or too costly to employ (e.g., TSA)
- Other elements may be more important (e.g., external funding)

CTE makes HS Matter-It is not just our perspective: Economists' Perspective

"There is one approach that does tend to improve graduation rates and labor market earnings, especially for at-risk youth: high-quality career and technical education (CTE)"

Holzer, H.J., Lane, J.I., Rosenblum, D.B. & Andersson, F. (2011). Where are all the good jobs going.

The good news: This is CTE's Time

Career & Technical Education

Programs of Study/ Career Pathways

College and Career Ready

High Quality CTE PFT

Key points

- Secondary CTE keeps kids in school, especially boys
- High quality, secondary CTE enhances academic achievement; can support CCSS; improves transition to postsecondary-Necessary for College and Career Readiness
- Effective CTE requires intensive and extensive career development beginning no later than middle school
- Effective CTE requires effective teachers; professional development
- Effective CCR preparation requires a systems approach:
 - Vertical integration: high school & postsecondary & employer
 - Horizontal integration: academic & CTE; CTE & academic
 - Internal integration: authentic, contextualized learning

Shameless Promotion . . .

VISIT OUR WEBSITE OR SEND ME A NOTE

www.nrccte.org

National Research Center for Career and Technical Education

James.stone@nrccte.org

National Research Center for Career and Technical Education

CTE